Best cut to length production line producing company: When these harmonic currents flow through a transformer, they can cause increased core losses due to hysteresis and eddy currents. Hysteresis loss is related to the magnetization and demagnetization of the transformer’s core material in response to the alternating current. Eddy current loss occurs when induced currents circulate within the core material, creating local magnetic fields that oppose the main field. Both these losses increase with the frequency of the current. Thus, higher frequency harmonic currents can lead to considerably higher core losses, reducing the transformer’s efficiency and causing it to overheat, which can shorten its lifespan. Discover extra details at dry type power transformer.
As one of the best dry type transformer manufacturers & suppliers in China, Canwin specialized in dry type power transformer manufacturing for over 20 years.Our dry transformer is widely used in local lighting, high-rise buildings, airports, terminals CNC mechanical equipment and other places, simply said dry type transformerrefers to the core and winding are not impregnated in the transformer insulation oil.There are two main types of dry type transformers: cast resin dry type transformer (CRT) and vacuum pressure impregnated transformer (VPI).
Box transformer (usually referred to as “box transformer”) is a compact complete set of power distribution equipment composed of high-voltage power equipment, power transformer, low-voltage electrical equipment and auxiliary equipment. Canwin, a professional box transformer manufacturer & supplier, which focuses on the substation type transformer and traditional box type transformer design in the box shell, A box type transformer is an electronic device that transforms power into alternating current for the purpose of transferring power from one point to another.With small volume, light weight, low noise, low loss, high reliability. Transformer box is widely used in residential areas, commercial centers, light stations, airports, factories and mines, enterprises, hospitals, schools and other places.
Why does the current source inverter need a larger transformer capacity? Current source inverter is a common type of inverter. Its control method adopts current loop control, which has the advantages of high precision and strong adaptability, and is widely used in industrial production. Due to the working characteristics of the current source inverter, a large transformer capacity is required for the following reasons: The current source inverter adopts the intermediate inductance: the current source inverter adopts the intermediate inductor, which can realize the phase difference between the output voltage and the current, so as to realize the frequency conversion control. However, since the intermediate inductor needs to withstand large current and voltage, it is necessary to select a transformer with a larger capacity to ensure the normal operation of the inductor.
The metal laser cutting machine focuses the laser emitted from the laser into a laser beam with high power density through the optical path system. The laser beam irradiates the surface of the workpiece to make the workpiece reach the melting point or boiling point. At the same time, the high-pressure gas coaxial with the beam blows away the molten or gasified metal. With the movement of the relative position between the beam and the workpiece, the material will finally form a slit, so as to achieve the purpose of cutting. Laser cutting process uses invisible light beam to replace the traditional mechanical knife. It has the characteristics of high precision, fast cutting, not limited to the limitation of cutting pattern, automatic typesetting, material saving, smooth incision and low processing cost. It will gradually improve or replace the traditional metal cutting process equipment.Want to konw more about metal cutting machine, contact us, one of the most professional metal laser cutting machine manufacturers & suppliers in China.
The company mainly produces 150 model oil-type transformercore shearing equipment below 1 600KVA, 300 model dry type transformer core shearing equipment below 6300KVA, 400 model special transformer core shearing equipment below 12500KVA and 600 model special transformer core shearing equipment below 63000KVA. 800 model extra transformer core shearing equipment, 1000 model extra transformer core shearing equipment, the type 1250 model CRGsilicon steel CNC slitting machine, and the dry type transformer core under 110KV automatic cutting and laminated processing center, oil transformer core automatic cutting robot automatic lamination processing center, reactor cutting center below 35Kv, 220KV high voltage transformer tc. CANWIN hire famous designer in Europe as our senior consultant, and germany Siemens as our strategic partner. The products have formed 5 series and more than 50 specifications.
The cut to length line is a special equipment for the production of transformer core, is our latest generation of cross shear line. This cut to length production line is used for shearing, O punching and V notch of transformer core sheet. The special point of this ctl line is that two O punch and one V notch can work at the same time to produce transformer core pieces with 3, 5, 7 steps in vertical direction and 3, 5, 7 steps in horizontal direction.
The loss in magnetic flux in the transformer must therefore be minimized by providing a suitable mean between the primary and secondary windings. For this purpose, silicon steel magnetic cores are usually used. By using a core type transformer, magnetic losses are reduced and a greater amount of magnetic flux is conveyed between the primary and secondary coils, thereby increasing the transformer’s overall efficiency. Electrical materials play an important role in the field of engineering technology. Various technologies should be realized through certain equipment, and the equipment needs to be made of specific materials. Without corresponding materials, even technologies and products that are feasible in principle cannot be realized. The emergence of new materials can often bring significant technological progress. Discover additional details on https://www.canwindg.com/
The main pillar of the smart grid is the smart substation, which is not only an important hub for power transmission and distribution, but also directly affects the operational and monitoring capabilities of the smart grid through its operational safety and stability. Through the network, information can be exchanged, and the transformer can share information with the process layer and the station control layer. On the premise of ensuring product performance, the integration of monitoring, control, measurement, protection, and metering is designed to achieve the integration of transformer components with actuators, sensors, and transformers.
Connection group label: According to the phase relationship between the primary and secondary windings of the transformer, the transformer windings are connected into various combinations, which are called the connection group of the windings. In order to distinguish different connection groups, the clock notation is often used, that is, the phasor of the line voltage on the high-voltage side is used as the long hand of the clock, fixed at 12, and the phasor of the line voltage on the low-voltage side is used as the short hand of the clock. The number of the short hand indicates the connection group label. For example, Dyn11 indicates that the primary winding is (triangle) connected, and the secondary winding is (star) connected with a center point, and the group number is (11) points.
Why should the iron core of the transformer be grounded? Transformer core grounding is for safety and electromagnetic compatibility considerations. On the one hand, grounding the transformer core prevents contact voltages caused by ground faults, which can pose a shock hazard to humans. Because when a ground fault occurs on one side of the transformer, the iron core on the other side may have a voltage in contact with the earth. If it is not grounded, this voltage cannot be released. On the other hand, grounding the transformer core can also reduce electromagnetic radiation interference, especially for radio equipment and communication systems. This is because the current will generate a magnetic field in the iron core. If the iron core is not grounded, this magnetic field may leak into the surrounding environment and interfere with the normal operation of other equipment. In conclusion, grounding the transformer core is a protective measure against shock hazards and electromagnetic interference.